How to recognise a conformally Einstein Metric?

Maciej Dunajski

Department of Applied Mathematics and Theoretical Physics University of Cambridge

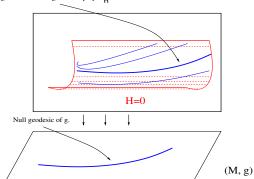
• MD, Paul Tod arXiv:1304.7772., Comm. Math. Phys. (2014).

Conformal Geometry and Null Geodesics

- Two (pseudo) Riemannian metrics g and $\hat{g} = \Omega^2 g$ on M (where $\Omega: M \to \mathbb{R}^+$) are conformally equivalent.
- Conformal rescalings preserve angles, and null geodesics:

$$H = g^{ab} p_a p_b, \quad \hat{H} = \Omega^{-2} H,$$

 X_H Hamiltonian vector field on $T^*M, \omega = dp_a \wedge dx^a$ Integral curve of the geodesic spray x_H T*N



CONFORMAL GEOMETRY AND FIELD EQUATIONS

Four dimensions

$$\hat{g}_{ab} = \Omega^2 g_{ab}, \quad \hat{\epsilon}_{abcd} = \Omega^4 \epsilon_{abcd}, \quad \text{so} \quad \hat{\epsilon}_{ab}{}^{cd} = \epsilon_{ab}{}^{cd}$$

and so $\star: \Lambda^2(M) \to \Lambda^2(M)$ is conformally invariant.

Maxwell's equations

$$dF = 0, \quad d \star F = 0$$

are conformally invariant.

• Einstein equations are NOT conformally invariant.

CONFORMAL TO EINSTEIN

- (M,g) (pseudo) Riemannian n-dimensional manifold with Levi-Civita connection ∇ .
- Curvature decomposition: Riemann=Weyl+Ricci+Scalar

$$[\nabla_a, \nabla_b] V^c = R_{ab}{}^c{}_d V^d$$

$$R_{abcd} = C_{abcd} + \frac{2}{n-2} (g_{a[c}R_{d]b} - g_{b[c}R_{d]a}) - \frac{2}{(n-1)(n-2)} Rg_{a[c}g_{d]b}.$$

- \bullet (M,g) is
 - Einstein, if $R_{ab} = \frac{1}{n} R g_{ab}$.
 - 2 Ricci-flat if $R_{ab} = 0$.
 - **③** Conformal to Einstein (Ricci-flat) if there exists $\Omega: M \to \mathbb{R}^+$ such that $\hat{g} = \Omega^2 g$ is Einstein (Ricci-flat).

Two problems in conformal geometry

• (M,g) Lorentzian four-manifold. Does there exist $\Omega: M \longrightarrow \mathbb{R}^+$, and a local coordinate system (x,y,z,t) such that

$$\hat{g} = \Omega^2 g = -dt^2 + dx^2 + dy^2 + dz^2.$$

Answer. Need $C_{ab}{}^{c}{}_{d}=0$ (Conformally invariant, as $\hat{C}=C$).

- Given an n-dimensional manifold (M,g), does there exist $\Omega:M\longrightarrow \mathbb{R}^+$ such that Ω^2g is Einstein?
 - \bullet n=2. All metrics are Einstein.
 - ② n=3. Einstein=constant curvature. Need $Y_{abc}=0$ (Cotton tensor).

CONFORMAL GRAVITY

$$\begin{array}{lll} B_{bc} &:= & (\nabla^a \nabla^d - \frac{1}{2} R^{ad}) C_{abcd}, & \mathsf{Bach} \\ E_{abc} &:= & C^{ef}{}_{cb} \nabla^d (*C)_{afed} - (*C)^{ef}{}_{cb} \nabla^d (C)_{afed}, & \mathsf{Eastwood\text{-}Dighton}. \end{array}$$

- Necessary conditions: $B_{ab} = 0, E_{abc} = 0.$
- Sufficient conditions (locally): $B_{ab} = 0, E_{abc} = 0 + \text{genericity on}$ Weyl.
- Conformal gravity:

$$\int_{M} |C|^{2} \mathrm{vol}_{g} \longrightarrow \mathrm{Euler\text{-}Lagrange} \longrightarrow B_{ab} = 0.$$

Anti-self-duality (genericity fails)

ullet An oriented 4-manifold (M,g) is anti-self-dual (ASD) if

$$C_{abcd} = -\frac{1}{2} \epsilon_{ab}{}^{ef} C_{cdef}.$$

- $B_{ab} = 0$, $E_{abc} = 0$ and yet (in the real analytic category)
 - ASD depends on 6 functions of 3 variables.
 - $R_{ab} = 0 + \text{ASD}$ depends o 2 functions of 3 variables.
- Signature (4,0) or (2,2). (Lorentzian+ASD=conformal flatness).
- ullet Question: Given a 4-manifold (M,g) with ASD Weyl tensor, how to determine whether g is conformal to a Ricci-flat metric?

TWISTOR EQUATION

- $\mathbb{C} \otimes TM \cong \mathbb{S} \otimes \mathbb{S}'$, where $(\mathbb{S}, \varepsilon), (\mathbb{S}', \varepsilon')$ are rank–two complex symplectic vector bundles (spin bundles) over M.
- Spinor indices (love it or hate it): a=AA', where $A,B,\dots=0,1$, and $A',B',\dots=0,1$. Metric

$$g = \varepsilon \otimes \varepsilon'$$
.

• Twistor operator. $\mathbb{D}: \Gamma(\mathbb{S}') \to \Gamma(T^*M \otimes \mathbb{S}')$.

$$\pi_{A'} \longrightarrow \nabla_{A(A'}\pi_{B')}$$

Conformally invariant if

$$g \to \Omega^2 g$$
, $\varepsilon \to \Omega \varepsilon$, $\varepsilon' \to \Omega \varepsilon'$, $\pi \to \Omega \pi$.

Prolongation of the Twistor Equation

- Proposition. An ASD metric g is conformal to a Ricci flat metric if and only if $\dim(\operatorname{Ker} \mathbb{D}) = 2$.
- Prolongation

$$\nabla \pi - \alpha \otimes \epsilon' = 0, \quad \nabla \alpha + \pi \, \exists \, P = 0,$$

where $\alpha \in \Gamma(\mathbb{S})$, and $P_{ab} = (1/12)Rg_{ab} - (1/2)R_{ab}$.

- Connection \mathcal{D} on a rank-four complex vector bundle $E = \mathbb{S} \oplus \mathbb{S}'$.
- Spinor conjugation in Riemannian signature: $\sigma: \mathbb{S}' \to \mathbb{S}'$.

$$\pi = (p,q), \quad \sigma(\pi) = (-\bar{q},\bar{p}), \quad \text{so} \quad \pi \in \operatorname{Ker} \mathbb{D} \leftrightarrow \sigma(\pi) \in \operatorname{Ker} \mathbb{D}.$$

ullet Theorem 1. There is a one-to-one correspondence between parallel sections of (E,\mathcal{D}) and Ricci-flat metrics in an ASD conformal class.

TENSOR OBSTRUCTIONS

- Integrability conditions for parallel sections: $\mathcal{R}\Psi=0$ where $\mathcal{R}=[\mathcal{D},\mathcal{D}]$ is the curvature (4 by 4 matrix), and $\Psi=(\pi,\alpha)^T$.
- If $\mathcal{R}=0$ then g is conformally flat. Otherwise differentiate: $(\mathcal{D}\mathcal{R})\Psi=0, \quad (\mathcal{D}\mathcal{D}\mathcal{R})\Psi=0, \quad \dots$
- Necessary conditions: rank $(\mathcal{R})=2$. Sufficient conditions: rank $(\mathcal{R},\ \mathcal{DR})=2$.
- Set $V_a=4|C|^{-2}C^{bcd}{}_a\nabla^eC_{bcde}$. Theorem 2. An ASD Riemannian metric g is conformal to a Ricci-flat metric if and only if

$$\begin{split} \det(\mathcal{R}) &:= & 4\nabla^e C_{bcde} \nabla_f C^{bcdf} - |V|^2 |C|^2 = 0, \quad \text{and} \\ T_{ab} &:= & P_{ab} + \nabla_a V_b + V_a V_b - \frac{1}{2} |V|^2 g_{ab} = 0. \end{split}$$

EXAMPLE

Two parameter family of Riemannian metrics (LeBrun 1988)

$$g = f^{-1} dr^2 + \frac{1}{4} r^2 (\sigma_1^2 + \sigma_2^2 + f \sigma_3^2), \quad \text{where} \quad f = 1 + \frac{A}{r^2} + \frac{B}{r^4},$$

where σ_j are 1-forms on SU(2) such that $d\sigma_1 = \sigma_2 \wedge \sigma_3$ etc.

• Kahler and vanishing Ricci scalar, so ASD. Conformal to Ricci flat?

$$\det(\mathcal{R}) = 0, \quad T_{ab} = \frac{A(4B - A^2)}{(Ar^2 + 2B)^2} g_{ab}.$$

- If A = 0 then g is Ricci flat (Eguchi–Hanson).
- If $B=A^2/4$ then $\hat{g}=(2r^2+A)^{-1}g$ is Ricci flat. ASD Taub–NUT

$$\hat{g} = U \Big(dR^2 + R^2 (\sigma_1^2 + \sigma_2^2) \Big) + U^{-1} \sigma_3^2, \quad \text{where} \quad U = \frac{1}{R} - 4A.$$

• g is ASD Kahler, $\Omega^2 g$ is hyper-Kahler! Are there more such examples?? (Clue: The Kahler form for g becomes a conformal Killing-Yano tensor for \hat{g}).

Another example

Left invariant metrics on a four-dimensional nilpotent Lie group

$$g = {\sigma_0}^2 + {\sigma_1}^2 + {\sigma_2}^2 + {\sigma_3}^2, \quad \text{where}$$

$$d\sigma_0 = 2\sigma_0 \wedge \sigma_3 - \sigma_1 \wedge \sigma_2, \quad d\sigma_1 = \sigma_1 \wedge \sigma_3, \quad d\sigma_2 = \sigma_2 \wedge \sigma_3, \quad d\sigma_3 = 0.$$

- Find $C_+=0$, but $R_{ab}\neq 0$. Conf. to. Einstein obstructions vanish.
- Let $\sigma_3 = d \ln(z)$ where $z: M \to \mathbb{R}^+$.

$$\hat{g}=z^3\;g$$
 ASD and Ricci-flat.

• Local coordinates (τ, x, y, z) s.t.

$$\sigma_0 = z^{-2}(d\tau + ydx), \quad \sigma_1 = z^{-1}dx, \quad \sigma_2 = z^{-1}dy, \quad \text{and}$$

$$\hat{g} = U(dx^2 + dy^2 + dz^2) + U^{-1}(d\tau + \alpha)^2,$$

where (U=z, $\alpha=ydx)$ satisfy the monopole eq $*_3dU=d\alpha$ on $\mathbb{R}^3.$

• Domain Wall in $(M \times \mathbb{R}, g - dt^2)$ (Gibbons+Rychenkova 2000, MD+Hoegner 2012). Approximate form of a regular metric on a complement of a cubic in \mathbb{CP}^2 .

Thank You!